

Bridging Private & Public Blockchains: A zk-SNARK Framework for Secure ERC-1155 Transfers

Darío Valarezo-Castañeda, Aitor Gómez-Goiri and **Cristina Regueiro**

7th International Congress on Blockchain and Applications

● 26th June, 2025
Lille (France)

Table of contents

Context	3
State of the Art	7
Proposal	11
Results	14
Conclusions	17

Context

Motivation

Blockchain ecosystem remains highly fragmented

- Public and private blockchains operate in silos.
- Enterprises need secure, private asset transfer.
 - Current focus on public-to-public interoperability.
 - Some approaches for private-to-private interoperability (Hyperledger Cactus).
 - Lack of standards for private-to-public interoperability

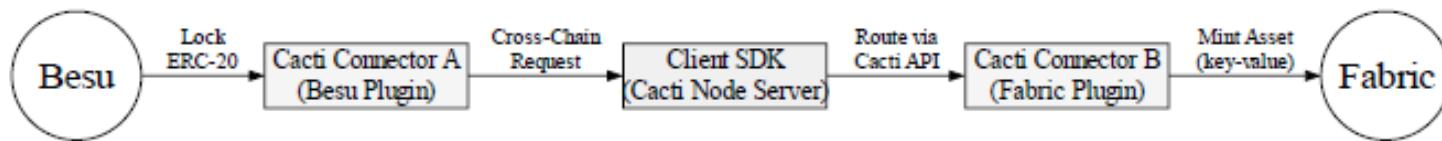
Context

MINE.IO: Blockchain based traceability platform

- Mining waste management.
- ERC-1155 standard: fungible and non-fungible tokens.
- Hyperledger Besu: private deployment.
- It should be publicly extended to make circular economy a reality as well as to unlock monetization opportunities.
 - Interoperability with a public blockchain is recommended

<https://mineio-horizon.eu/>

Objective


Propose a hybrid interoperability solution in cross-chain private-to-public transactions

- Hashed Timelock Contracts (HTLCs) based locking.
- Zero knowledge Proofs (ZKPs)
- Relayer-assisted proof coordination

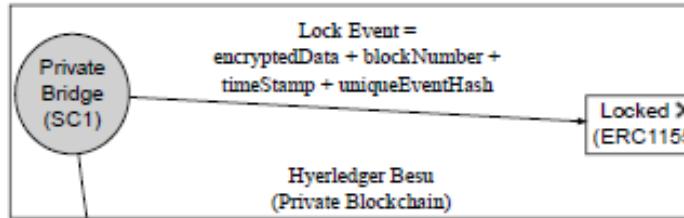
- Allow interoperability of MINE.IO solution (Hyperledger Besu) with public Ethereum compatible networks.

State of the Art

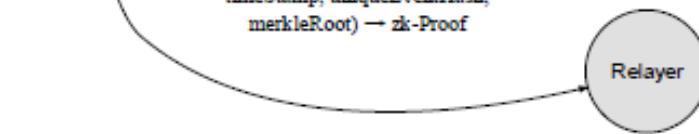
Current Interoperability Solutions

Hyperledger Cacti for private-to-private interoperability

Key cross-chain mechanisms

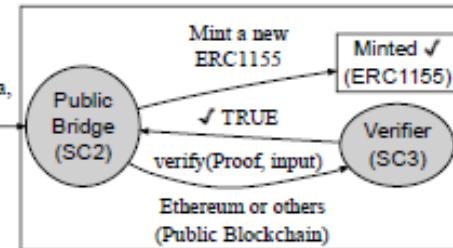

- A **bridge** relies on a verifier to validate messages from a smart contract on Blockchain A (origin) and relay them to Blockchain B (target).
- **Atomic swaps** allow direct peer-to-peer exchanges of tokens across blockchains without trust in intermediaries.
- **HTLCs** (Hashed Timelock Contracts) enforce conditional transactions using cryptographic hash functions. Funds remain locked until all participants meet the predefined conditions.
- **Relay chains** act as intermediaries, monitoring multiple blockchains and validating cross-chain transactions.
- **Sidechains** are independent blockchains connected to a primary blockchain. They allow asset transfers between chains while reducing congestion on the main network.

Key cross-chain mechanisms


- A **bridge** relies on a verifier to validate messages from a smart contract on Blockchain A (origin) and relay them to Blockchain B (target). → **Third parties are involved.**
- **Atomic swaps** allow direct peer-to-peer exchanges of tokens across blockchains without trust in intermediaries. → **Simple but with limited flexibility.**
- **HTLCs** (Hashed Timelock Contracts) enforce conditional transactions using cryptographic hash functions. Funds remain locked until all participants meet the predefined conditions → **trustless and lightweight solution**
- **Relay chains** act as intermediaries, monitoring multiple blockchains and validating cross-chain transactions. → **Third parties are involved.**
- **Sidechains** are independent blockchains connected to a primary blockchain. They allow asset transfers between chains while reducing congestion on the main network. → **Complex infrastructure**

Proposal

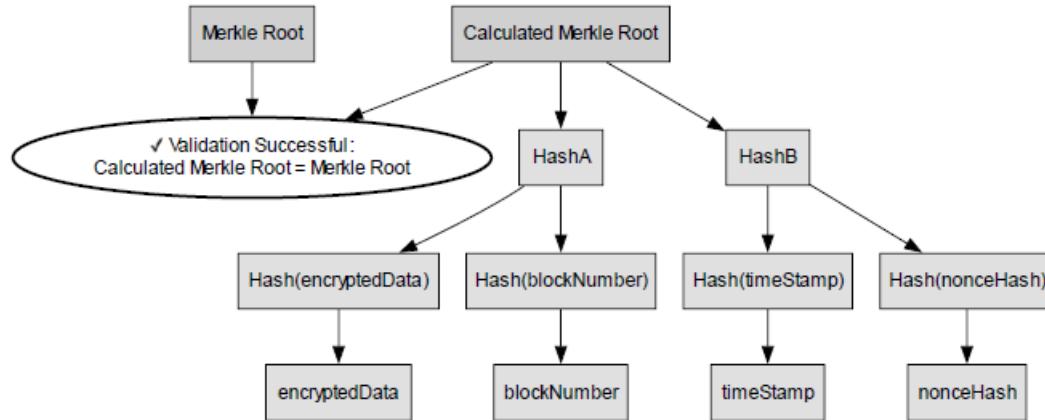
Architecture and Workflow



`generateZKProof(encryptedData, blockNumber, timeStamp, uniqueEventHash, merkleRoot) → zk-Proof`

`mintTokens(encryptedData, zkProof, zkProofHash)`

1. Locking on Besu.
2. Event Monitoring & Proof Generation
3. Data Transmission to public network
4. Verification and Minting on public network



Security by ZoKrates: verifier

It validates that the data received by the relayer in the locked event → If positive, the token is minted.

It generates the merkle root without publicly exposing these sensitive values.

It automatically generates the verifier smart contract with the described logic.

Results

Validation: MINE.IO

Trace mining waste assets inside a pyrometallurgical process

Novel **circular economy** approaches as well as the current **strict regulations** on the management of mining waste in the European Union highlight the need for the tokens representing waste assets (i.e., tailings, slag, etc.) to be managed in public networks where **transparency is greater**.

New value strings in **DeFi ecosystems**.

Validation: MINE.IO

Considered technologies: Besu, Amoy (Polygon testnet), hardhat, Node.js Relayer, ZoKrates.

Process Stage	Time (ms)	Block time	Tx Fees (MATIC)	Zero Base Fee
Lock Event (SC1)	5000		0	
Proof Generation (Relayer)	38551	heavy offchain cryptographic processing	0	
Verify and Mint (SC2, SC3)	6813		0.015	low-fee network (Polygon)

Conclusions

Conclusions & Future Work

Secure and scalable token migration between private (Hyperledger Besu) and public (Amoy) blockchain networks

- Secure ERC-1155 bridging is feasible
 - Public/private bridges enable transparency & value.
 - zkSNARKs bring privacy to interoperability
- Domain agnostic
 - Applied to MINE.IO traceability solution
- **Future work:**
 - Explore zkSNARK batching for higher efficiency
 - Analyze more complex ZKP solutions.(e.g., Circom).
 - Extend comparative studies with other alternatives.

MEMBER OF BASQUE RESEARCH
& TECHNOLOGY ALLIANCE

Cristina Regueiro
cristina.regueiro@tecnalia.com